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We study centered finite difference methods of general order
of accuracy 2p. Boundary points are approximated by one sided
operators. We give boundary operators which are stable for the
linear advection equation. In cases where the approximation is un-
stable, we show how stability can be recovered by use of high order
artificial dissipation operators. The methods are generalized to the
compressible Navier-Stokes equations. We obtain a highly accurate
grid converged finite difference solution of the Navier—Stokes equa-
tions, whigh we use to evaluate the accuracy of a finite volume TVD
shock capturing method. @ 1995 Academic Press, Inc.

1. INTRODUCTION

In this report we develop finite difference methods of high
order and use them in practical computations of compressible
Navier—Stokes flows. The motivation for this work is twofold.
First, we want to investigate the gain in efficiency from using
high order methods. On simple model problems, this gain is
substantial [5]. The question is whether this is true also for
more complicated problems. Second, a good centered difference
high order method can be used to produce a reference solution
for convergence studies. In Section 6 we will show a compari-
son of results from a TVD shock-capturing method and see
how that solution converges to the *‘exact’” high order finite
difference solution. Finally, a good high order difference
method can be used for direct simulation of turbulence.

The philosophy of this work is to cover all the steps from
the stability analysis on a linear scalar problem to the implemen-
tation for the 2D Navier—Stokes system. In this way we will
understand the reliability of the linear scalar stability analysis
and what additional difficulties are introduced by going to more
space dimensions and systems of equations.

It is well known [3] that operators of higher orders of accu-
racy are more efficient. The drawbacks of high orders are

(a) strong assumptions about the regularity of the solution;
(b} wide stencils call for many numerical boundary condi-
tions.

The problem with regularity (a) can be resolved using modern
ENQ methods. In this report we shall instead address point (b).

2. STABLE HIGH ORDER METHODS

The goal is to develop high order methods which are stable
and easy to implement. We want to solve the Navier—Stokes
equations of compressible fluid flow, which are a system of
PDE on the form

w, + f(w), + gw), = f.(ww,, w,), + g,(w,w, w).

As a first step we define and analyze numerical metheds for
the scalar model problem,

m+au, =0 0=x<owr>0
(0, x3 = uy(x)

u(t, M = u,(r) ifa>0.
We discretize the computational domain, 0 = x < c, by the
uniform grid x; = (j — 1) Ax, j = 1, 2, ..., where Ax is the
distance between the grid points.

The x-derivative will be discretized by a pth-order accurate
centered difference operator

5

Dvy=—
[ Axk=*.s

Rt = u,(x;) + O(Ax?).

It is assumed that p = 24, g integer. The coefficients for the
second- and fourth-order methods are

— 1 2 2 1

ol )= —3 a;=0, ai=r3
4 — 1 4 — _2 4 _ 4 -2 4= _L
al, =1, ot =5 ay=0 oal=5a0= 1

Coefficients for a general ¢ can be found in [1].
We settle for using a Runge—Kutta method in time, and thus
we concentrate on the semi-discrete problem,

dv;(1)
dt

=—abDu(t), j=q+1l,q+2,g+3, ..
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The centered difference operator is p + | points wide, and thus
requires ¢ = p/2 extra boundary conditions. At the boundary
points we approximate u,(x;) by pth-order accurate one-sided
difference operators, with the stencil extending over the gnid
points 1, 2, ..., m,

m

‘ 1
Diyu, = K}Z Buv,.

r=1

The total approximation is thus

du;(r) . .
7 = —aD},ij(F), = 11 s &y
(2.1a)
du; (1) .
== —aDut), [=qt gt 2g+ 3
if x = 0 is an outflow boundary and
vt} = w,(f),
dv; (1) . .
T = —aD‘r',ij(f), = 2, ey G (ZIb)
dv,(t) .
T: —aDpUI(t)’ j:q+ l,q-l- 2,q+ 3, very

if x = 0 is an inflow boundary.

The most straightforward boundary operator to use is the
smallest possible stencil which maintains the order of accuracy.
For pth-order accuracy, we approximate the derivatives at the
points x,, ..., x,, by using x,, ..., x4, for the stencil of the op-
erator.

As an example, consider fourth-order accuracy in the interior.
We need two boundary operators to approximate u,(x;) and
t.(x2). We use the grid points {x;, ..., x5) as stencil for the fourth-
order boundary approximations. The boundary operators are

Dlu, = (—3us + 160, — 360, + 48v, — 25v)/(12 Ax)
Div, = (s — 6u, + 182, — 10v, — 3u,)/(12 Ax).

We will also investigate another set of boundary operators
which are obtained as above, but with a stencil which is one
point wider. This extra degree of freedom is used to match the
leading error term in the Taylor expansion of the approximation

error of the boundary operator with the leading term in the error
of the interior operator. If we have for the interior approximation

D,u; = u(x) + c,u?V Ax? + O(Ax?*Y),
we determine the boundary operators such that

Diov, = u.(x) + chn™V Ax? + O(Axe)

with ¢f = ¢,. For the case of fourth-order interior approxima-
tion, this leads to

Dl v, = (2v, — 1305 + 360, — 56v; + 58, — 270}/ (12 Ax)
D%evg = (_U6 + 6U5 - 16U4 + 28U3 - 1502 - 201)/(12 Ax)

We denote these error matched boundary conditions by Di,.
The reason for this type of boundary operator is that for the
Navier—Stokes equations, the operators will be applied twice
to approximate second derivatives. Thus the leading error term
will be differentiated by the second application of the approxi-
mation. Unless the leading error term is continuous, loss of at
least one order of accuracy will occur.

3. STABILITY ANALYSIS

In this section we analyze the stability of the test problems
(2.1a) and (2.1b). We analyze the inflow (¢ > 0) case and the
outflow {a << () case separately, but we do not here consider
hyperbolic systems of equations, although a system could be
analyzed similarly (for one space dimension}, by decoupling
it into characteristic variables. The analysis is done by numeri-
cally evaluating the eigenvalues and generalized eigenvalues
of the difference approximation. We describe below some main
features of this method of stability analysis. Similar automatic
stability analysis has been done (with more generality than
here) in [10]. However, [10] treats the fully discretized problem,
which becomes very complicated when multi-stage Runge—
Kutta methods are employed.

We recall the stability theory for initial-boundary value prob-
lems (IBVP) as described in [3]. The analysis used here is the
semi-discrete version of [3]. Although we have followed the
description given in a forthcoming book {4], the ideas presented
here are very similar to [3] and can easily be understood
from [3].

Consider the general IBVP,

du; (1) )
:1: =Qu(n+F, j=12,..,
U_yn(® 3.
Ly . = g,
Un(?)

where (2 is the difference operator in the interior and the bound-
ary conditions are represented by the operator Ly, the grid points
up to x, are involved in the boundary procedure. The problem
is defined onj = 1, 2, .... The approximation with boundary op-
¢rators,

du, (1)

—a’t =Qui()+F, j=qg+l,g+2, .,
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du;(1)

e Qun+F, j=

1,2, ...q,

can be put in the form (3.1), with g{t) = 0, by writing it as

dv;(t) .
— =0+ F, j=

(Q,— QN =0, j=12,.,4q

1,2,..

where we now have introduced the extra variables v_g,(t), ...,
vy(t). Thus the operator Ly is in this case constructed from
)

in [4], the problem (3.1) is defined as stable if an estimate

[} e ol ar= ke [} e iFo)lia

can be found for Ax sufficiently small, and for all > 7, and
with K(n} — O when 1 — o,

We next show how 1o investigate whether a method is stable
or not according to this definition. We only give the necessary
steps, without explaining why they are done. We refer to [3,
4], for motivations and proofs of the statements below.

In order to investigate the stability, we Laplace transform the
problem (3.1) in time by introducing v, (r) = e "¢;. (3.1) becomes

56, = 00, + F,
L = §
el << =,
where § = 5 Ax, and (0 = AxQ. This is an eigenvalve problem.
If it has a solution with Re (s) = (}, then the difference method
is not stable, since the factor e* then permits unlimited growth

of the solution. It is possible to derive the properties of this
problem from the homogeneous problem

;= Qu, (3.2a)
L =0 (3.2b)
5]l < . (3.2¢)

Equation (3.22) is a linear difference equation, which we solve
by standard methods. Since we use centered differences in the
interior, Qu; = 2., uUj, the characteristic polynomial is
given by

g

O rt — sr1=10.
=

First we compute the roots of this equation, ry, 7, ..., ry.
Because of condition (3.2¢), we can disregard the roots with

modulus greater than one. From the stability of the periodic
probiem, it foilows that there are exactly g roots for Re (s) >
0; see [3]. I there are no multiple roots we have the solution

0=t o+ o+ e,r,

(3.3)
where the remaining constants ¢y, ..., ¢, are determined from
the boundary conditions.

Remark. ¥ r, = r, is a double root, we get terms of the
form (¢, + je,)7}in (3.3). In a computer program this is handled
by substituting ¢, + ¢;ri by

+1 j+1
i rJl r{’_
¥ C2 R
r— r

if r; and r, are closer than a given tolerance. The quotient above
converges 10 jri when r; — r,. Similar expressions can be found
for roots of higher muitiplicity.

Inserting (3.3) into the boundary condition Ly = 0 yields
a linear system of equations

Cy

where the matrix € is a function of §, and from which the
stability can be practically investigated according to the follow-
ing theorem,

TueoreM 3.1, [f there are no roots of the equation

Det(C(s)) = 0

with Re(s) = 0 then the approximation {3.1) is stable.

For a preof, see [3, 4].

It is now possible to perform this stability investigation nu-
merically. Given s, go through the following steps to find
Det(C).

Form the characteristic polynomial and find its roots.
Remove the roots which are greater than one,

Form the matrix C from the boundary conditions.

Ea I e

Form the determinant.

It is simple to implement this, since standard library routines
can be used to calculate the roots of the polynomial and to find
the determinant.

Once the function Det{C(5)} can be evaluated, it is straight-
forward to solve the 2 X 2 system
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TABLE I
Roots of Det(C(5)) in the Right-Hand Plane

Interior Boundary Inflow Outflow Stable
D, Dy, No roots No roots Yes
D, D, 5= 0093 + 1,308 No roots No
Dy Dy, §= 0058 + 1.337; No rools No
Dy Dy, 5= 0417 + 1.443¢ No roots No
D; D, 5= 0496 + 1478 No roots No

Det{(C(5)) = 0, (3.4)

osing Newton’s method with numerical evaluation of the Jaco-
bian matrix.

Remark. Tt is possible to substitute the determinant above
with some other more numerically well-conditioned quantity
which measures the singularity of the system, e.g., the smallest
singular value.

Remark. When Re(s) == 0, there is a risk that we will get
the wrong number of roots, since some roots will have absolute
value =1 to machinre precision. In such cases we evaluate the
derivative dr/ds by implicit differentiation of the characteristic
equation. From the direction of this derivative we easily check
whether a root “belongs’ to our solution in the right-hand
plane or not.

The computer program can plot the surface Det(C'(5)) in the
plane Re{s} = 0, and # can solve {3.4) using a Newton like
method. To be sure to be within the domain of convergence
for Newton’s method, we discretize a sufficiently large part of
Re(s) = 0 and start a Newton iteration from each grid point.
If the method converges to a root we stop the program and
return the root.

The stability analysis was tried out on some cases, with result
shown in Table 1. The boundary operators are as described in
Section 2. D,, has the smallest stencil of order p, and D, is
the error matched boundary operator of order p. In the inflow
case a boundary value was given at x| and the boundary opera-
tors used at x,, ..., x,. For the outflow case the boundary
operators were used also at x;.

TABLE TI

The Necessary Artificial Dissipation to Make
the Method Stable

Interior Boundary Dissipation, 4¢ Stable for
D, D, 8 d > 0.0029
Dy Dy 8 d > 00018
D, Dy 12 d = 0.0013
D, D 12 4 > 0.00076
Dy Dy 12 d > 0.00092

We conclude that the method (D,, D4,) is stable.

A complete listing from the root search for approximations
of type (D,, D), r = p, is given in Appendix A.

The result from stability analysis was confirmed by solving
the test problem (2.1) on a bounded domain with inflow on
one boundary and outflow on the other. We show in the next
section how the unstable methods can be made stable by using
artificial dissipation.

4. SEMI-DEFINITE ARTIFICIAL DISSIPATION
OPERATORS

In this section we improve on the stability of the high-order
centered-difference methods by adding artifictal disstpation.
Furthermore, artificial dissipation is necessary for solving non-
linear problems such as the compressible Navier—Stokes equa-
iions, due to nonlinear insiabilities.

We will study approximations of the type

du;

E 4.1}

d
= —aD,v, — Ax (Ac A_Yp,,

where thus a 4gth derivative is wsed as artificial dissipation.
This approximation will be denoted (D,, D,,, V4,), where D,
is the boundary difference approximation operator. We have
added the general dissipation operator

d

to the approximation in Section 3. Before performing a stability
analysis on the problem (4.1}, we study the dissipation operator
separately, For g = 1 this is the well-known fourth-order dissi-
pation operator, often used in CFD codes. The operator restricts
the accuracy to at most 4g — 1.

If the operator is used with periodic boundary conditions, it
is semi-definite in the usual scalar product

N
(u,0) = D, mv; Ax.
=

This follows from the rule for periodic grid functions, u,

(u, Avu) = —(A_u, u)

TABLE It

L* Norm of Truncation Errors

Grid DyiM, DM, DM, DM,
Gy 7.2 x 107 25 % 107 62 x 107 097
G 9.74 4.2 X 1072 8.7 x 107 304
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from which foliows
(o, (ALA DY) = (AL ALY, (AL A ) = 0.

This property is normally used to show that the forward in
time problem

du; (¢} _
— (A A Yu ()

is well-posed. Take the scalar product by «, and we obtain

d||ul®
dt

= —(u, (A, AYTu) = 0.

Thus the norm of u decreases in time.

Next we modify the dissipation operator when the boundaries
are not periodic, as described in [7]. It is possible to keep the
semi-definiteness at the price of reducing the order of accuracy
at the boundaries.

Consider the splitting of the periodic operator into an interior
part and a boundary part,

(Ar Ay = (A, A+ @A, A,

where (A, A_Yuv;) - ((Ay Aw;) = 0. For example, g = 1,

-2 1 00 1
] =2 1 0 .. 0
0 1 -2 1 0
0 01 -2 1
1 00 1 -2
0O 0 00 0
1 -2 1 0 0
0 1 -2 1 0
0 01 -2 1
0 00 00
-2 1 0 1
0 0 0 0
0 0 0
+
0 0O 0 0

Define the dissipation operator for a problem with boundaries as
(A A—)Eq = (AL AYA, A—)'l;-

The interior operator (A, A_){ has zeros on the boundary and
will destroy all peniodic terms [7]. The resulting operator is thus
local also on the boundary, and it has the semi-definite property

—((Ac A¥(AL A, v) = — (A5 A, (A AYuy)
—((&, A Yo, ((Ac )
+ (AL A

= -j@, k=0

i

The operators are stable, but the accuracy on the boundary is
reduced, according to

g = 1 = accuracy interior = 3, onboundary = 1

g = 2 = accuracy interior = 7, onboundary =3

g = 3 = accuracy interior = 11, on boundary = 5.

We next perform the normal mode stability analysis from
Section 3, with these artificial dissipation operators included;
1.e., we consider the approximation (4.1). The dissipation opera-
tors are modified at the boundary as described above. We study
stability as a function of the normalized viscosity parameter
d = d/a. For the unstable methods, it turns out that the root
in the right-hand plane §* moves to the left as 4 increases, and
at a certain point it leaves the right-hand plane, and thus the
method becomes stable. Figure 4.1 shows the trajectory of the
root in the § plane as d increases from zero for the case (D,
Dy, Vio). Table 1I shows the necessary amount of dissipation
to make the methods in Table 1 stable.

5. IMPLEMENTATION FOR THE 2D COMPRESSIBLE
NAVIER-STOKES EQUATIONS

We now use the methods analysed in Sections 3 and 4 t©
solve the Navier-Stokes equations for compressible fluid flow
on a curvilinear grid. The main difference compared with the
model problem are the inclusion of metric derivatives and the
use of second derivatives in the physical viscosity operator.

Assume that we are given the grid

TABLE IV

L7 Errors in Entropy on the Body for Grids of Various Refinements

Method 17 %9 33 X 17 65 % 33 129 x 65
(D;, Dy, V) 52107 1810 67X 107 22X 107
(Ds, Dy, V) 24 %X 1077 65X 107 14X 107 © 38 x 107
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FIG. 4.1. Root of Det(C(5)) as function of d.
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A system of conservation laws transforms into

1
W, + 7; ((ynf(w) - Ing(w))f
+ (—ydfw) + xg(w)),) = 0

in the uniform (£, n) space. Here the determinant of the Jacobian
of the metric mapping is Vg = x;», — x,¥y; The problem is
now given on a uniform grid, so that the operators discussed
in the previous sections can be applied directly in each coordi-
nate direction,

The Navier—Stokes operator contains terms of the type

{a(u)u, + b(u)u,);. (5.1)

These are approximated by using the high order formulas to find
1
u, = Vg(ynuf — Yely)
w, = L (—x uy — Xpti,)
y T L 7N Al T AgHy
Ve

at each grid peint (including boundary points) and then by
inserting these into (5.1) and applying the same formulas again
to approximate the outermost x-derivative. This means that;
e.8., ,, is approximated by (D,)u. In this way stencils become
wide, but the method becomes very simple to implement.

To maintain the order of accuracy, the metric derivatives x,
Xy, ... are evaluated using the same order of accuracy as for
the flux derivatives. In all computations, exactly the same for-
mulas are used for the metric derivatives as for the flux deriva-

tives. Using the same difference operator leads to a small trunca-
tion error [9]. We have made some numerical experiments
to verify that the truncation error has the right order. In this
verification, the effect from the grid derivatives can be clearly
seen. More specifically, we divide the equations into time deriv-
ative plus inviscid Euler terms and Navier-Stokes viscosity
terms, according to

i, + E(u) = NS(u).
We write formally the semi-discrete approximation as

dv;
o = T Ealu) T NSylu),

where Ey and NSy are the numerical approximations of the
Euler and Navier—Swokes terms, respectively. Take now an
arbitrary function u{x, y) and compute
E(u)y — Ex(u) or NS(u) — NSy(u)

on grids of vartous refinement. This gives the truncation error
for each of the terms. In Table [1I we show the L.* norm of the
error in the Navier—Stokes terms on two different grids. G, is
a very smooth grid with small variation in cell size. G is an
extremely stretched grid for boundary layer computations.
D,/M, means that the order of accuracy in the difference ap-
proximation is p and the order of approximation of the metric
derivatives is g.

If the grid is not regular enough, the way we treat the metric
is very critical. On the other hand, if the grid transformation
is smooth the effect of grid derivatives is only related to the
order of accuracy in the approximation of the derivatives x,,
T

6. NUMERICAL RESULTS

One of the objectives of this work was to evaluaie the perfor-
mance of TVD and ENO schemes for supersonic external flows,
By using a very accurate centered-difference method, one can
compute a very accurate solution, which can be used as refer-
enice solution for a shock capturing scheme,

First some comments about the validity of the linear stability
analysis. The methods of order eight did not perform well on
the two-dimensional Euler/Navier—Stokes equations. There is
an additional instability emanating from the corners of the
computational domain for the eighth-order method. Thus the
results in this section are obtained only by second- and fourth-
order methods. In all cases the artificial dissipation operators
from Section 4 were necessary, even in the case (D,, D,,) which
is linearly stable without artificial dissipation. The dissipation
coefficient was scaled with the maximum spectral radius of the
Jacobian of the Euler system, corresponding to the scaling d =
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FIG. 6.1. Computational domain.

d/ain the scalar linear case (see Section 3), Even so, the stability
limits derived in Section 4 for the coefficient 5’, could not be
used. In all cases the coefficients d had to be chosen larger
than the lower stability limit derived in Section 4.

The test case we use is the supersonic flow past a disk. The
grid has n; X n; points and is arranged such that the wall
boundary is given by (i, 1) and the outer boundary by (i, ;).
Figure 6.1 shows the computational domain.

The free stream Mach number is 3.15 and the Reynolds
number is 1000. We give the temperature on the wall as 288K
and use Sutherland’s law to describe the temperature depen-
dence of the viscosity. The centered difference methods cannot
be used for discontinuous solutions. Instead we fit the outer

2.00 7

o.g0 - — ey

-1.50¢ -1,00 -0.50 Q.0¢ o,

FIG. 6.2. [so-Mach contours.
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F1G. 6.3. Error in entropy along the body.

boundary of the grid to the bow shock by using the Rankine—
Hugoniot condition. Thus the influence of the Navier—Stokes
viscosity is neglected at the outer boundary. The R-H condition
normal to the boundary,

SO0 — Wi,) = E(wa) — B, ),

gives four equations for the unknown shock speed s and the
unknown solution vector in the outermost point Win - The free
stream state w., is given; hence, we have four equations for
five unknowns. However, one characteristic is propagating from
the interior of the domain into the bow shock, and by keeping
this outflow characteristic unchanged we obtain a fifth equation
which closes the system. Thus the grid velocity, s, is computed
atj = n;, and the grid is moved with this velocity,; i.e., we add
the equations

eyl

-1.50 -1.00 -0.50¢ c.00 c.590

FIG. 6.4, Navier-Stokes solution,
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FIG. 6.5. Influence of d on C; for the second order solution: {(a) 65 X 33 grid points; (b) 129 % 65 grid points.

———dx(;’:’ D= se(i.jy
e 3)

to the Navier—Stokes system, The grid transformation (x, ¥)
(i, j, 1y is thus a function of time. The quantities ¢ and d are
two cutoff functions with the properties d(1, ;) = ¢(ni, n)) =
0, d(n;, 1) = (1, ) = 1, ¢(i, 1) = d(i, 1) = 0. This means
that the grid is not moving at the wall and that the outer corners
of the grid are only moved one dimensionally along the straight
j-coordinate lines. :

The metric time derivatives are included in the Navier—

0.08,

0.07

0.0

Stokes system by taking into account the time dependence of
ihe metric. The system then takes the form
(VEw), + (W) — 1, W) — ,(8(W) — YW
+ (—ydf(wW) — xw) + x{g(w) — yw)), = 0.
We discretize this system in time using @ three-stage Runge—
Kutta methed which we iterate until the time derivatives of the

solution and the grid are approximately zero. The Runge—-Kutta
method, when applied to «, = f(u), is given by

u' = u, + Atf(u,)

0.06

005

Clo.os

0.03

0.02

0.01

025 H2 015 D1 D05 0
X

-%.5 045 D4 0I5 03

45 D45 04 035 03 4025 D2 0I5 01 00S +]
X

FIG. 6.6. Influence of d on C; for the fourth-order solution: (a) 65 X 33 grid poiats; (b) 129 X 65 grid points.
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FIG. 6.7. Grid convergence: (a) second order; (b} fourth order.

u? =, + Ar((1 = 0) f(u,) + Gf(1™))
Uy = T AH( = ) f () + B (),

{6.1)

where 6 is a parameter, 0 << 6 << 1. In [6], conditions for
Runge—Kutta methods are given which guarantee that if the
semi-discrete problem is stable, according to the stability con-
cept used in Section 3, then the time-discretized probiem is
also stable. It is easy to verify that the method (6.1) satisfies
these conditions for 8 = .

The solution updated in all points, including boundaries, for
each stage in the R-K method. Boundary conditions are then
imposed. For solid walls, this amounts to setting u = v = 0,
T = T, in the boundary points. For free stream boundaries,

0.08 r . — .

T T T T T

4th order
2nd order

0.

J —

Q2 0a5 041

85

093 0328 .05 o
X

045 04 035

FIG. 6.8. Seccnd- and fourth-order sotutions grid converged.

we use a characteristic decomposition and give free stream
values for ingoing characteristic quantities. The only exception
is near the wall, where the free stream boundary cuts off the
boundary layer. For the innermost points in such a case, we use
a special boundary condition described in [2], which consists of
imposing the pressure from outside the boundary layer also
inside the boundary layer. .

For the cylinder case we first show some Euler solutions,
thus with no physical viscosity operator. For this flow we know
analytically the entropy on the wall. In Fig. 6.2 we show a
typical Euler solution. Table IV shows the L® error in entropy
on the wall for a second- and fourth-order method, respectively.
Figure 6.3 shows a plot of the 10-logarithm of the error in
entropy along the body for the case (D,, Dy, Vi) on a grid
with 65 > 33 points. All the cases show a similar shape of the
error curve, the error is low near the stagnation point and
increases exponentially along the body to be largest at the
outflow.

Since the dissipation operators have reduced accuracy on the
boundary, one could suspect that the convergence rate on the
boundary would drop to one and three, respectively. However,
the solution converges with a somewhat lower order of conver-
gence. A possible explanation is that the asymptotic region has
not been reached for the coarse grids used.

We next go on to the Navier—Stokes equations. An interesting
quantity to plot here is the skin friction coefficient, C;, because
it seems to be difficult to capture it correctly. The grid used
here is as regular as possible, with aspect ratio of the cells near
one, and no stretching towards the wall.

Figure 6.4 shows iso Mach contours of a typical solution,
the difference between the fourth- and second-order methods
cannot be seen from the contour plots, they look identical.

Instead we present the C; plots, beginning in Fig. 6.5, where
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FIG. 6.9, Grid stretchings: {a) finite difference; (b} TVD low stretching; (¢) TVD high stretching.

we investigate the influence of the artificial dissipation parame-
ter. For the second-order accurate method, the d coefficient of
the fourth-order dissipation takes the three values 0.005, 0.01,
and 0.05, we see the influence on C;on a 65 X 33 grid and a
129 X 65 grid.

In Fig. 6.6, we present C; for the fourth-order method, where
now d is the coefficient of the eighth-order dissipation operator
and it takes the values 0.001, 0.005, and 0.01.

We conclude that the eighth-order dissipation operator has
not as large effect on C; as has the fourth-order dissipation,
and that in both cases it is possible to choose d sufficiently
small, so that the influence on the solution is not large.

Next we investigate the grid convergence of C;for the second-
and fourth-order methods. Figure 6.7a shows the second-order
solution on three grids with 65 X 33, 129 X 65, and 257 X
29 points, respectively. Figure 6.7b shows the same thing for
the fourth-order method. As expected, the fourth-order method

cyl
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FIG. 6.10. Iso-Mach contours of a TVD solution.

converges better, at least in the first half of the flow. Towards
the upper part, the flow is more difficuit to resolve, probably due
to transition to turbulence or separation of the boundary layer.

Figure 6.8 shows a comparison between the finest grid solu-
tions for the second- and fourth-order methods. C; has con-
verged with grid refinements and to the same curve for both
methods of different accuracy. It seems we can trust this solu-
tion as being correct.

We next compare this “‘exact’’ solution with what one ob-
tains using a conventional scheme used in CFD. We use the
second-order accurate TVD, finite volume Osher’s methed [8],
for the Euler part of the equations. The physical viscosity terms
are approximated by second-order centered finite volume ap-
proximation. The wall boundary conditions are imposed in a
standard way, using mirror cells. The solution is iterated to a
steady state using a line relaxation iterative method.

The same problem as for the centered finite difference meth-
ods is solved, but now with fewer grid points, on a stretched
grid. This models a ‘“‘real’’ computation, Figure 6.9 shows the
difference in stretching between the grids used. With the TVD
scheme we capture the shock and thus keep the grid fixed
in time.

Figure 6.10 shows iso-mach contours of tvd shock-captured
sotution, which should be compared with the finite difference
solution in Fig. 6.4,

Figure 6.11 shows the C; curve for the TVD method on a
65 X 33 grid, for three different stretchings, namely (a) no
stretching, (b) stretching as 1/VRe, (c) stretching as 1/Re. As
the stretching increases, the C; curve seems to converge (o a
limit curve. The C;curves on the twe most stretched grids are
almost indistinguishable.

Finally, the main result of this work, Fig. 6.12 shows the
difference between the converged fully resolved finite differ-
ence shock-fitted calculation and the highly stretched finite
volume shock capturing solution.

As expected, the stretched grid gives a good description of
the solution in the region where the boundary layer is well
attached to the wall. Towards the upper part of the disk, the

<
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boundary layer shows a tendency to separate and the finite
volume soluticn does not give a good description of ;.

7. CONCLUSION

We have presenied two studies. First we have developed
stable centered finite difference methods. A stability analysis
for a linear scalar test problem was performed. Then, the method
was generalized to the compressible two-dimensional Navier—
Stokes equations. Some methods of order 8 with very wide
stencils were stable for the linear test equations, but were not
stable in practice for the 2D Navier—Stokes equations. For
other methods of lower accuracy =4, the stability analysis
gave results which agreed with practical computations, in a
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FIG. 6,12 TVD solution on a stretched coarse grid and a converged FD
solution.
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TABLE V

Interior  Boundary Inflow, 5 = Quiflow, s = Stable
2 2 — — Yes
4 2 — — Yes
4 3 —_ — Yes
4 4 — — Yes
6 2 — — Yes
6 3 — —_ Yes
6 4 —_ — Yes
6 5 0.05834 + 1.3373i —
6 6 0.19633 + 1.3680i —
8 2 — — Yes
8 3 — — Yes
8 4 —— —_— Yes
8 5 — — Yes
8 6 0.15462 + 1.3789{ —
8 7 0.30806 + 1.4135i —
8 8 0.41745 -+ 1.4433 —_
10 2 — — Yes
10 3 — 0.12006 + 0.95209%
10 4 - -— Yes
10 5 —_ — Yes
10 6 0.17943 + 1.3401¢ —
10 7 0.25946 + 1.4113/ —
10 8 0.39979 + 1.4498i —
10 9 0.51439 + 1.4748i -—
(4] G 0.60554 + 14977 —
12 2 — — Yes
12 3 — 0.25660 + 0.96508(
12 4 — — Yes
12 5 0.01435 + 1.2745¢ —
12 6 0.20389 + 1.3495{ —
12 7 .23487 + 1.3931i —
12 8 036710 + 1.4420¢ —_
12 9 0.48822 + 1L.4776i _—
12 10 0.59598 + 1.5018/ —
12 11 0.68372 + 1.5200i —_
12 12 0.76663 + 1.5374i —
14 2 — — Yes
14 3 — 0.3359 + (.9990i
14 4 0.00833 + 1.2486i —
14 5 0.01389 + 1.2834/ 0.0401 + 1.3112¢
14 6 0.20842 + 1.3647i —
14 7 0.22599 + 1.3861i —
14 8 0.35400 + 1.4332i —
14 9 0.46950 + 1.4708i —
14 10 0.57543 + 1.5006; —
14 11 0.67269 + 1.5233i —
i4 i2 0.76672 + 1.5403{ —
14 13 0.83886 + 1.5539{ —
14 14 0.90676 + 1.5674i —
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qualitative way. However, exact values about the amount of
artificial dissipation needed for stability did not cary over
directly to the Navier—Stokes equations.

The second study was to use a fourth order accurate centered
difference method, to completely resolve a compressible Na-
vier—Stokes flow past the front part of a disk. This solution
was then compared with an unresolved stretched grid TVD
shock capturing solution. We concluded that the TVD stretched
grid solution gives correct results only if the boundary layer is
well attached to the wall.

APPENDIX A

We present in Table V the result from the search for general-
ized eigenvalues for approximations with pth-order centered
differences in the interior of the domain, and rth-order one-
sided boundary operators, r = p. The test equation is the scalar
u, + au, =0,

The boundary operators are not unique when the order on
the boundary is very low. We have here used the centered
difference operator of order R, in the boundary points whenever
possible. For r odd, we have chosen the operator biased to the

left, which means that it is stable for ¢ > 0, but not for a <
Q. This can explain why roots on the outflow appear for some
cases with high order in the interior, and with low odd order
on the boundary.
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